
Algorithms for Elliptic Nets

Graeme Taylor

January 2008

1 Tate Pairing via Elliptic Nets

For the Tate pairing of two distinct points P ,Q with P of order m, we need to
compute the terms (m + 1, 0) and (m + 1, 1) of the elliptic net corresponding
to P, Q (See [Stange]). For this we can employ a double-and-add approach,
chaining up from the first term (initial data) to the nth in log2(n) steps.
However, due to the structure of the recurrence relation, this requires keeping
track of additional terms. To achieve this, Stange introduces blocks of terms.

2 Blocks

Define a block centred on k to be:

(k − 1, 1) (k, 1) (k + 1, 1)

(k − 3, 0) (k − 2, 0) (k − 1, 0) (k, 0) (k + 1, 0) (k + 2, 0) (k + 3, 0) (k + 4, 0)

Computing the Tate pairing can thus be achieved by computing the block
centred at any of m− 1, m or m + 1.

2.1 Double-and-Add Algorithm

Double-and-add Algorithm
INPUT: Integer n and block centred at 1.
OUTPUT: Block centred at n.

1



1. Compute binary digits di of n such that n = (dkdk−1 . . . d1)2

with dk = 1.

2. Set c = 1 (centre)

3. For i=k-1 down to 1 do:

• If di=0 Compute block with centre 2c; Set c to 2c

• Else, Compute block with centre 2c + 1; Set c to 2c + 1

4. Return final block.

Clearly, this requires procedures to generate the new blocks from the old-
[Stange] gives formulae for these ((12)-(17)). A speed-up (Id. S5.1) can
be achieved by computing commonly used squares/products at each step,
denoted by A(i) = (i, 0)2 and B(i) = (i− 1, 0)× (i + 1, 0) below.

2.2 Double

Given a block centred on k, we can compute the block centred on 2k:

(k-1,1)

D(k)

(k,1)

C(k)

(k+1,1) (k-3,0)

B(k-2)

(k-2,0)

A(k-2) B(k-1)

(k-1,0)

A(k-1) B(k)

(k,0)

A(k) B(k+1)

(k+1,0)

A(k+1) B(k+2)

(k+2,0)

A(k+2) B(k+3)

(k+3,0)

A(k+3)

(k+4,0)

(2k-1,1) (2k,1) (2k+1,1) (2k-3,0) (2k-2,0) (2k-1,0) (2k,0)(2k+1,0) (2k+2,0) (2k+3,0) (2k+4,0)

(2,0)(-1,1)(1,1)

Figure 1: Dependencies for block doubling.

The inversions in the recurrence formulae are independent of k, so are
precomputed and made available to Double and DoubleAdd as multipliers.
Including multiplication by these values, the total cost of a block double is
35 multiplications, 7 squarings and no inversions.

2.3 DoubleAdd

Given a block centred on k, we can compute the block centred on 2k + 1:

2



(k-1,1)

D(k)

(k,1)

C(k)

(k+1,1) (k-3,0)

B(k-2)

(k-2,0)

A(k-2)B(k-1)

(k-1,0)

A(k-1)B(k)

(k,0)

A(k)B(k+1)

(k+1,0)

A(k+1)B(k+2)

(k+2,0)

A(k+2)B(k+3)

(k+3,0)

A(k+3)

(k+4,0)

(2k,1)(2k+1,1)(2k+2,1) (2k-2,0)(2k-1,0) (2k,0)(2k+1,0) (2k+2,0)(2k+3,0) (2k+4,0)(2k+5,0)

(2,0)(-1,1)(2,-1)

Figure 2: Dependencies for block double-and-add.

The inversions in the recurrence formulae are independent of k, so are
precomputed and made available to Double and DoubleAdd as multipliers.
Including multiplication by these values, the total cost of a block double-and-
add is 35 multiplications, 7 squarings and no inversions.

3 Short Blocks

Define a short block centred on k to be:

(k − 1, 1) (k, 1) (k + 1, 1)

(k − 3, 0) (k − 2, 0) (k − 1, 0) (k, 0) (k + 1, 0) (k + 2, 0) (k + 3, 0)

Notice from 1 that the (k+4, 0) term is necessary only to generate (2k+4, 0)
in the Double procedure. Thus given a short block centred at k, we can
double it to obtain the short block centred at 2k, as follows.

3.1 DoubleShort

Given a small block centred on k, we can compute the small block centred
on 2k:

The inversions in the recurrence formulae are independent of k, so are
precomputed and made available to DoubleShort as multipliers. Includ-
ing multiplication by these values, the total cost of a DoubleShort is 31
multiplications, 6 squarings and no inversions.

3



(k-1,1)

D(k)

(k,1)

C(k)

(k+1,1) (k-3,0)

B(k-2)

(k-2,0)

A(k-2)B(k-1)

(k-1,0)

A(k-1) B(k)

(k,0)

A(k)B(k+1)

(k+1,0)

A(k+1) B(k+2)

(k+2,0)

A(k+2)

(k+3,0)

(2k-1,1) (2k,1)(2k+1,1) (2k-3,0) (2k-2,0)(2k-1,0) (2k,0) (2k+1,0) (2k+2,0)(2k+3,0)

(2,0)(-1,1)(1,1)

Figure 3: Dependencies for short block doubling.

3.2 DoubleAddShort

From 2 it can be seen that the missing (k+4, 0) is required for both (2k+4, 0)
and (2k + 5, 0)- although the latter can be dropped for a small block, the
former cannot. However, the terms (k − 2, 0), . . . , (k + 3, 0) already present
in the short block are sufficient to restore it to a full block by computing
(k + 4, 0):

(k + 4, 0) =
(k + 3, 0)× (k + 1, 0)× (2, 0)2 − (3, 0)× (k + 2, 0)2

(k, 0)

Further, by storing (2, 0)2, this patch requires only 2 multiplications and 1
inversion since some of the terms feature in the precomputation:

(k + 4, 0) =
(2, 0)2B(k + 2)− (3, 0)A(k + 2)

(k, 0)

(k-1,1)

D(k)

(k,1)

C(k)

(k+1,1) (k-3,0)

B(k-2)

(k-2,0)

A(k-2)B(k-1)

(k-1,0)

A(k-1)B(k)

(k,0)

(k+4,0)

A(k)B(k+1)

(k+1,0)

A(k+1)B(k+2)

(k+2,0)

A(k+2)

B(k+3)

(k+3,0)

A(k+3)

(2k,1)(2k+1,1)(2k+2,1) (2k-2,0)(2k-1,0) (2k,0)(2k+1,0)(2k+2,0)(2k+3,0)

(2k+4,0)

(3,0) (2,0)(-1,1)(2,-1)

Figure 4: Dependencies for short block double-and-add.

4



Omitting the calculation of the (2i + 5, 0) term to produce a short block
(as illustrated) saves us 2 multiplications, and thus the total cost of Dou-
bleAddShort is 35 multiplications (including precomputed inversions inde-
pendent of k), 7 squarings and 1 inversion that depends on k.

3.3 Relative Performance

DoubleAddShort is more expensive than DoubleAdd yet generates less
terms! Despite the savings of DoubleShort compared to Double, a purely
short-block algorithm would perform worse than the standard algorithm for
binary strings with a high Hamming weight, since for each Double-and-add
an inversion is introduced in place of a multiplication. However, when the
Hamming weight is low, then the occasional cost of an inversion is balanced by
the savings accrued during short doublings. To exploit this, whilst guarding
against too many inversions, we introduce an algorithm that uses a mixture
of standard (‘long’) and short blocks.

4 Mixed block-length

4.1 Cost of Procedures

We consider the generation of long or short blocks with centre 2k (double) or
2k + 1 (double-and-add) from long or short blocks of centre k. The cheapest
such operation is the generation of the short block with centre 2k from a
short or long block with centre k, at a cost of 31 multiplications, 6 squarings
and no inversions. Using this as a base line, each procedure introduces the
following additional operations:

Procedure M S I
DoubleShortFromShort 0 0 0
DoubleLongFromShort 6 1 1
DoubleAddShortFromShort 4 1 1
DoubleAddLongFromShort 6 1 1
DoubleShortFromLong 0 0 0
DoubleLongFromLong 4 1 0
DoubleAddShortFromLong 2 1 0
DoubleAddLongFromLong 4 1 0

5



4.2 Heuristics

We adopt a windowing approach with two-bit windows: that is, bit bi informs
whether we are to double or double-and-add, but bi−1 is also examined to
determine whether we should generate a long or short block.
For bibi−1 = 00, the short block approach clearly minimises the cost through
these two bits.
For bibi−1 = 11, one should stay with long blocks if these are already in use,
to avoid inversion. If short, adopting the long block immediately will mean
only a single inversion is required for the following run of 1s.
For bibi−1 = 10, if short, then an inversion is required whether you go long
or not: since being long is not necessary for the following double, we keep
the multiplication count down by 2 by staying short. Similarly for long: no
inversion is required to perform the Double-and-add for either length, but as
the next operation will be a double, we go short to avoid the unnecessary 2
multiplications.
For bibi−1 = 01, then it is always worth staying short if you already are, de-
fering the inversion until it is strictly required for bi−1 = 1 (possibly choosing
to go long then based on bi−2). If currently long, going short will save 4
multiplications and a squaring (approximately 5 multiplications). Even if it
proves necessary to upgrade to long for the very next bit, that will only cost
around 3.6 multiplications (based on 1I = 1.6M , see Section 4.4). Thus even
a single zero bit is worth going short for.

Hence the approach is to always go to (or stay with, if already the case)
short blocks, unless bibi−1 = 11 in which case one should go to (or stay with)
long blocks. Thus a 2-bit window is sufficient to determine appropriate block
length, leading to the following algorithm.

4.3 2-bit Window Algorithm

Double-and-add Mixed-Blocks Algorithm
INPUT: Integer n and long block centred at 1.
OUTPUT: Block centred at n.

1. Compute binary digits di of n such that n = (dkdk−1 . . . d1)2 with dk =
1.

2. Set c = 1 (centre); Set status =‘long’.

6



3. For i = k − 1 down to 2 do:

• If status =‘long’

– If di = 1

∗ If di−1 = 1 Compute block with centre 2c + 1 via Dou-
bleAddLongFromLong; Set c to 2c + 1.

∗ Else Compute short block with centre 2c + 1 via Dou-
bleAddShortFromLong; Set c to 2c+1; Set status =‘short’.

– Else
Compute short block with centre 2c via DoubleShortFrom-
Long; Set c to 2c; Set status =‘short’.

• Else

– If di = 1

∗ If di−1 = 1 Compute block with centre 2c + 1 via Dou-
bleAddLongFromShort; Set c to 2c+1; Set status =‘long’.

∗ Else Compute block with centre 2c+1 via DoubleAddShort-
FromShort; Set c to 2c + 1.

– Else
Compute short block with centre 2c via DoubleShortFromShort;
Set c to 2c.

4. • If d1 = 1

– If status =‘short’: Compute block with centre 2c + 1 via
DoubleAddShortFromShort.

– Else Compute block with centre 2c+1 via DoubleAddShort-
FromLong.

• Else Compute short block with centre 2c via DoubleShortFromShort.

5. Return final block.

4.4 Performance and notes

• The maximum possible gain is when n is a power of two, in which case
the algorithm proceeds entirely by short doubles. In this case, there
is a 12 percent reduction in the number of multiplications/squarings
performed, with no inversions required.

7



• Brute-force analysis of all possible 16-bit strings gives an average re-
duction of around 9 percent in the number of multiplications/squarings
performed. Costing each inversion at 1.6 multiplications (based on av-
erage performance in SAGE for a 256-bit prime field), this leads to an
average reduction of around 5 percent in the number of multiplications
required for such strings. Testing several hundred 256-bit strings gives
a similar figure.

• Clearly, inversion is not viable if it will lead to a division-by-zero error.
However, since the first zero along (i, 0) will arise at (m, 0), no such
error will occur when performing Tate pairing computations.

References

[Stange] The Tate Pairing via Elliptic Nets K.Stange
http://www.math.brown.edu/~stange/tatepairing/

8


